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A large class of linearly concatenated shift registers is shown to generate approxi-
mately maximally spaced phase shifts of pn-sequences, for use in pseudorandom number
generation. A constructive method is presented for finding members of this class, for
almost all degrees for which primitive trinomials exist. The sequences which result are not
normally characterized by trinomial recursions, which is desirable since trinomial
sequences can have some undesirable randomness properties.

l. Introduction

Binary maximal length linear recurring sequences, also
known as pn-sequences, m-sequences, or maximal length linear
shift register sequences, are known to have good randomness
properties and hence are often used in psendorandom number
generation (Refs. 1, 2). Since all different phase shifts of the
same sequence are essentially uncorrelated, weighted sums of
several different phase shifts are also essentially uncorrelated
for distances up to the minimum distance between the compo-
nent phase shifts. Thus efficient methods for simultaneous
generation of several maximally spaced phase shifts of the
same pn-sequence are useful in generating pseudorandom
numbers.

Various methods have been presented for generating several
phase shifts of the same pn-sequence (Refs.3-7). The major
drawback in these techniques is that for high-degree recursions
it is computationally infeasible to evaluate the distances
between the phase shifts, When the distances are computable
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or controllable, they are fairly small — at least small enough so
that one could operate the generator long enough to see
correlations between the phase shifts. Hurd (Ref. 8) has pre-
sented a method for generating approximately maximally
spaced phase shifts of the product of two pn-sequences, and
the autocorrelation properties of such sequences are good
(Ref. 9), but the method is more efficient to implement in
hardware than in software, and it has the minor disadvantage
that the sequence is not quite maximal length.

We present here a large class of efficient algorithms for
generating approximately maximally spaced phase shifts of
pn-sequences; that is, the phase shifts approximately eq varti-
tion the period of the sequence. Second, we present : con-
structive method for finding an appropriate configuration for
almost every degree for which there exists a primitive trino-
mial. The recursions which result are not generally trinomial
recursions, which is desirable since some trinomial recursions
have less desirable randomness properties than others (Refs.
10-12).



ll. Description and Motivation

Figure 1 shows a general linear concatenation of shift
registers. The algebraic description is as follows: There are N
binary shift registers with lengths Lg,L,, ... ,Ly_,. The con-
tent of the ith stage of the kth register at time ¢ is A;‘(t) and
satisfies

k _ 4k .
A, (1) = A7() for 1<i<L, 0N
Each register has a linear output function

L

k
FR(r) = Y a¥ ¥ () mod (2) ()
i=1
which also serves as the input to the next register:

A8 (e +1) = F¥ (1) (superscripts modulo V) (3)

The sequences F¥(7) satisfy a linear recursion of degree L =
L
k-

The output of the generator is the N-tuple [FO(), ...,
FN-1(1)] . Alternate outputs are the pseudorandom numbers

N-1
X(ty = ) FR@* @
k=0
and
N-1
Y@) = Y FHO (5)
k=0

where the sums are integer sums (not mod (2)). When the
sequence is maximal length, i.e., has period 2%~ 1, the numbers
X(#) and Y(¢) are uniformly distributed and binomially distri-
buted, respectively, neglecting the fact that the all zero’s
N-tuple cannot occur.

The X(#) also have good multidimensional distribution
properties. Letting L, ;, = min {Ly,L,... Ly_, } we have:
Theorem 1. When the sequence length is 2X-1, X(¢) is uni-
formly distributed and L,,;, consecutive terms are mutually
independent (neglecting the effect of the absence of the all-
zero bit pattern in the collective register).

Proof: Since a repeat of the collective state of the registers
causes a periodic repetition of the output sequence, and since
the cycle length is 2& -1, all bit patterns, except all zeros, must
occur exactly once in each period. Since the output bits are
fed into the next register, the bits in the representation of
[X(-1), X(¢-2), ..., X(+-L,,;,,)] are all present in the regis-
ters at time #. It follows that {X(r-1), ..., X(z-L,,;,)] is
uniformly distributed in the L, ;, -cube (neglecting the effect
of the absence of the all-zero bit pattern).

For the convenience of analysis, an alternate description
can be given by defining sequences Af.‘ = [Af.‘(t): teZ)] and
F¥= [F¥t): teZ] and defining a delay operator D on
sequence B to be (DB)(r) = B(s—1). With this notation and the
implicit assumption that component arithmetic is modulo 2,
we have

At = pF* (6)
and

A¥ = D14k (7)
From the definition of Fk,

Ly

k = i-1 k 4k -
Fk =% D1k =
i=1

Lk
> Dl'aj.‘) FF=1 (8)
i=1

(Again superscripts of F are taken modulo N.) Letting

Ly
@) = 3 D,
i=1
we have
Fk o= f, (D) F*1 ©)
or

(10)
In addition

FO =FNm0dN =

N
| | [0y F° (11)
=1
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where f\ (D) = f,(D). This last equation implies

N
1+H fDY|F°=0 (12)

j=1

Furthermore, FO,F', ..., F V1 also satisfy this last equation.

When this equation is expressed as a relation among the terms
of FO, it is seen to be a linear recursion with constant coeffi-
cients and the characteristic polynomial is

N
Py =1+ I] 50 (13)
j=1
Of particular interest in this paper is the case where
X ak bk
£ = x K[l (14)

We show that these recursions yield approximately maximally
spaced phase shifts whenever the characteristic polynomial is
primitive. Recursions of this class are easily implemented in V
shift registers, interconnected with output functions which are
all powers of one function, f (x), plus some pure delays. If all
of the powers b, are unity, then all of the registers are
identical except for some pure delays. In the simplest case, the
functions are binomial. Such an example is shown in Fig. 2.

ll. Analysis

For the configuration shown in Fig. 2, where all of the
registers are the same except for the pure delays of 4., the
delay d(k, k + 1) from F* to F¥*1 is the same for all &, except
for the a, ; ie., it is @, plus the delay associated with f(x).
However, it is not clear what the delay associated with f (x) is,
or what the delay is between nonadjacent registers, i.e., from
F¥ to F* where j# 1. This complication arises because the
sum of the delays between adjacent registers need not equal
the period, but may be any integer multiple of the period. We
show here that all of the delays are approximately 1/b times
the period, or greater, where 5 = 2 b, .

The polynomial

Pey =1+ [T £,

=

x
It
[y
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introduced in the previous section has degree L =X L, pro-
vided a']ik =1 for all k. For good pseudorandom generators it
is desirable that P(x) be irreducible and primitive, and we now
make that assumption.

Since all F* satisfy the same recursion and the recursion is
primitive, all of the F X must be time delays of a common
sequence FO. It follows that X(¢) and X(z-7) cannot be uncor-
related for all 7 < 2L - 1. Whenever r is the delay between F*
and F/ for some k and j, a component of X(¢) will be identical
to a component of X(z-7). The question arises as to how small
the delay between two register outputs can be. The following
lemma will allow us to answer that question for certain genera-
tors:

Lemma: Let P(x) be an irreducible, primitive polynomial of
degree n over GF(2) and let x*[f (x)]? = 1 mod [2, P(x)],
where ¢ and b are relatively prime, positive integers and
a+b<2% - 1.If [f (0)]* =xk mod [2, P(x)] with 1 <k <b
and 0 < ¢, < 2" - 1, then there is an integer r, with
1 <r_<b such that

rk
6= @ Dl <a.

Proof: Since P is primitive, there exists an M ¢ [0, 27 -
2] such that f(x) = x¥ mod [2, P(x)]. Now | =
XA [f()]? = x2tPM mod [2,P(x)] ora+bM=q (2" - 1) for
some integer ¢. It follows from the assumptions, that 1 <gq
and b, g are relative prime.

Next, for each k with | <k <'b define q,, r, by

kq = qkb tr, O<rk<b

The range of k and the relative primeness of ¢ and b implies
r, #0. Now

kM:kq(2"~ 1)-a-k _ 12" - 1)-ak

b b

+q, (2" - 1)

Observing that xck = [F)]* = x*M mod [2, P(x)] we see
that

r."-1)-ak
Ck :__,E_b—)__mod(2n_ 1)



Since 1 <r, <band ab <27

"y
b

k(2
c = —
kK b
and

r
- _E n _ <
le, 5 Q" - 1) <a

This lemma can be used to bound the distances between
output sequences from concatenated shift registers when the
polynomials f (x) are all powers of a common polynomial

).
Theorem II. Let
M a. b
Px)y=1+ JT x7[reo) 7/,
j=1

(a]. =0, b]. > 0), be irreducible and primitive. Let

S
i
.MZ

\A.b.‘

~.
it
—_

and

~,
1l
—

«Q

It
™=

=

Then the distance between F¥ and F/ (i#j) is at least
2"-1D/b-a

Proof: The polynomial can be written P(x) = 1 +x*[f (x)]°. If

a and b were not relatively prime, P would not be irreducible.
The degree nisa +b - deg f=a+b,soclearlya - b <29+ 2°
< 2". Thus the lemma applies and [f (x)]* = x* where

T
le, s Q2" -ni<a

Now

: / b .
Fl= I Do) " i j>i

m=i+1

and

[ ~N-1

1 o™ o)’

m=i+l1

Fi

j
H “m [ £D)) Pm i if j <i

\_

In either case
FI = D' [f (D) F'

for some (Lk) with 0 <I< g and 0 <k <b. It follows that

i = pitek pi = paG@i po

From the lemma, it follows that

AR

iy = p ¢

Now d(i,j) is the distance from i to j. The above argument also
applies to d(j,i) so that

min [dG.)), dG,D] = P

IV. A Class of Examples

Let P(x) = x" + x® + 1 be an irreducible primitive poly-
nomial. In the field GF(2"), P has a root «. Thatis " +a? +
1=0. Let f= o ® so that *= (@ '+ Dorl=a" !
(1 +B). Raising both sides to the power b and substituting 8
for a™® gives 1= "% (1 +8)’. Thus B is a root of x%(1 +
x)® + 1 where 2= n- b. Since w is primitive, b and n are
relatively prime and it follows that @ and b are relatively
prime. Furthermore, if b is relatively prime to 2" - 1 then § is
also primitive. Therefore, any concatenated shift register with
outputs functions D**(1 + D)’k 0 <k <N- 1, where

N-1 N-—

—_

x

1]
[=]
x

=0
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with b relatively prime to 2" - 1, satisfies the conditions of
theorems I and II. We therefore have the theorem:

Theorem I Let P(x) = 1 + x® + x™ be an irreducible,

primitive polynomial with GCD(b, 2" - 1)= 1. Any concate-
nated shift register with output functions

a, . b

and output sequences F, (t),0 <k <N - 1,such that

n-1
3 4 =a

k=0
and

N-1

> b, =b

k=0

has the following properties, neglecting the effect of the all-
zero state:

N-1
(1) X(»= E 2%F¥(¢) is uniformly distributed.
k=0

(2) X(t - 1), ..., X(¢~- L)are mutually independent for L

< niin(ak +b,).

2" -1
b

(3) X(r) and X(¢t + 7) are uncorrelated for 1 <7 <
-a

We observe that the characteristic polynomial of the recus-
sion P is of the form P(x)= (1 +x)’x® + 1. This is not a
trinomial unless b is a power of 2.

Almost all primitive trinomials satisfy theorem III, that is,
all but those few where b and 2" - 1 are not relatively prime.
An extensive list of primitive trinomials up to degree 1000 is
given by Zierler and Brillhart (Refs. 13, 14).

When b is not a prime, the class of examples, and theorem
II1, extend to the cases where ¢ divides b, and c is relatively
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prime to 2" - 1. Letting f= o~ ¢, then B is a root of the
primitive polynomial (1 +x?/°) x"7® + 1, which can be
implemented in a concatenation of ¢ or fewer registers.

V. Computer Implementation

Members of the class of Section IV are easily implemented
by computer programs. In these implementations the bits in
position k of L, consecutive computer words are used to
represent the kth register. The number of registers equals the
number of bits in a computer word.

For example, consider the system derived from the primi-
tive polynomial x* 59 + x3# + 1 (Ref. 13) and implemented on
a 32-bit machine. Since GCD(34, 25 - 1)= 1, the above
transformation can be applied and gives the primitive poly-
nomial

P(x) = 1 +x125 (1 +x)**

Now define
f&x) = ¥ +x)=x3+x*
fx) = [t =x> (1 +x)? =x +x°
) = =@ =2t () = xt et
Then
31
L+ JT ) =1+x"5(1 +x)* =P (x).
i=0

Let M3 be the computer word with 1’s in positions 0, 1 and
2, and O’s elsewhere; let M4 be the computer word with 1’s in
positions 0 and 3 through 31 and 0’s elsewhere; and let M5 be
the computer word with 1’s in positions 1 through 31 and 0’s
elsewhere. Then the following Boolean expression generates
consecutive outputs

Z = [M3.AND.X(t - 3)] .XOR. [M4AND.X(t - 4)] XOR.

[M5AND. X(¢ - 5)]

and the new x(r) is a left or right cycle of Z, one place.
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Fig. 1. A linear concatenation of N shift registers

® OUTPUTS
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N=3 - F21)
LyLy = 6:L,=5

00 = XK 1x)
P =1+x4(1+x)°

Fig. 2. An example concatenation with b, = 1



